
Project Report: Patient Assistant Network
Database System

Name: Subhash Chandra

ID: 113649485

Email: csubhash@ou.edu

Course Name: DBMS

Course Number: CS/DSA-4513-001

Section: MS

Semester: Fall 2024

Instructor: Dr. Le Gruenwald



Table of Contents:

Task Description Page Number(s)

Task 1 ER Diagram 2-3

Task 2 Relational Database Schemas 4-14

Task 3

Main Task 3 Content 15-22

Discussion of storage structures for tables 23-24

Discussion of storage structures for tables (Azure SQL
Database)

25

Task 4 SQL statements and screenshots showing the creation of
tables in Azure SQL Database

26-45

Task 5
SQL statements (and Transact SQL stored procedures,
if any) Implementing all queries (1-15 and error check-
ing)

46-50

The Java source program and screenshots showing its
successful compilation

51-67

Task 6 Java program Execution 68-91

Screenshots showing the testing of query 1 68-69

Screenshots showing the testing of query 2 69-71
...

...

Screenshots showing the testing of query 15 88

Screenshots showing the testing of the import and ex-
port options

89

Screenshots showing the testing of three types of errors 90-91

Screenshots showing the testing of the quit option 92

1



Task 1: ER Diagram:

Figure 1: Entity-Relationship (ER) Diagram for Patient Assistant Network Database
System

2



Figure 2: Entity-Relationship (ER) Diagram for Patient Assistant Network Database
System

3



Task 2: Relational Database Schemas:

To convert the ER diagram into a set of relational schemas, we define each entity and
relationship as a table. The relationships between the tables are represented using foreign
keys.

1. Person Table

4



5



6



7



8



9



10



11



12



13



14



1 Task 3:

Storage Structure Choices for Each Relational Table:

Table
Name

Query #
and Type

Search
Key

Query
Fre-
quency

Selected File Orga-
nization

Justifications

Person
12 (Ran-
dom
Search)

SSN 1/week
Heap File with B+
Tree Index on SSN

The B+ Tree
index on SSN

supports effi-
cient searches
for unique per-
sons based on
SSN, optimiz-
ing retrieval
speed and stor-
age space. A
Heap file allows
efficient inser-
tions, as records
are appended,
which suits the
frequency and
variety of in-
sertions in this
table.

15



Table
Name

Query #
and Type

Search
Key

Query
Fre-
quency

Selected File Orga-
nization

Justifications

Person
1, 2, 3, 5, 7
(Insertion)

N/A Varies Heap File

The frequent
insertions across
Person and
subtype tables
are efficiently
handled by
a Heap file,
allowing high
throughput and
efficient storage.
Since these are
non-ordered
insertions, Heap
is optimal.

Person
4, 6, 15
(Deletion)

N/A Varies Heap File

Occasional dele-
tions are easily
managed in
Heap files by
marking records
as deleted with-
out reorganizing
data. The lec-
ture’s discussion
on free lists
could also sup-
port marking
deleted records
for re-use.

Phone N/A
SSN,
Phone Number

N/A Heap File

Multi-valued
attributes like
Phone are best
suited to Heap
files for flexi-
bility and ease
of insertion,
allowing mul-
tiple phone
entries per SSN,
as the lecture
suggests Heap
organization
for unordered,
multiple entries.

16



Table
Name

Query #
and Type

Search
Key

Query
Fre-
quency

Selected File Orga-
nization

Justifications

Client
2 (Inser-
tion)

Client SSN 1/week
Heap File with
B+ Tree Index on
Client SSN

The B+ Tree
index on
Client SSN

allows efficient
searches and
insertions, par-
ticularly for
clients assigned
to multiple
teams. B+
Trees are well-
suited for range
and random
search due to
their balanced
nature.

Client
8 (Random
Search)

Doctor Name,
Doc-
tor Phone

1/week
B+ Tree on Doc-
tor Name

The B+ Tree
index on
Doctor Name

enables efficient
retrieval of doc-
tor information
for each client,
optimized for
random access,
as it offers fast
retrieval in a
sorted order.

Need N/A
Client SSN,
Need Type

N/A Heap File

Heap files are
ideal for storing
multi-valued,
single-key at-
tributes with
minimal search
and update
requirements,
as Need has no
frequent query
access. The
lecture suggests
Heap for such
cases with low
retrieval needs.

17



Table
Name

Query #
and Type

Search
Key

Query
Fre-
quency

Selected File Orga-
nization

Justifications

Insurance Policy
15 (Range
Search)

Type 4/year
Clustered Index on
Policy ID and Type

A clustered
index on Type

optimizes range-
based searches
for insurance
policies sorted
by type, provid-
ing efficient ac-
cess for specific
policy types,
as discussed
in Indexed-
Sequential Files
in the lecture.

Team
1 (Inser-
tion)

Team Name 1/month
Heap File with
B+ Tree Index on
Team Name

Heap file sup-
ports insertions
with minimal
storage over-
head, while
the B+ Tree
index enables
quick access
by Team Name.
As the lecture
discusses, B+
Tree indexing is
ideal for sequen-
tial and ordered
search with
high insertion
volume.

Team
11 (Range
Search)

Date Formed 1/month
Clustered Index on
Date Formed

Clustered in-
dexing on
Date Formed

facilitates effi-
cient retrieval of
teams based on
formation dates,
especially use-
ful for ordered
queries, as noted
in Sequential
and Indexed-
Sequential
organization.

18



Table
Name

Query #
and Type

Search
Key

Query
Fre-
quency

Selected File Orga-
nization

Justifications

Volunteer
3 (Inser-
tion)

Volunteer SSN 2/month
Heap File with B+
Tree Index on Volun-
teer SSN

Frequent in-
sertions are
supported by a
Heap file, with
the B+ Tree
index enabling
fast access
to individual
volunteers by
SSN. B+ Tree
indexing en-
sures efficient
retrieval even
in high-volume
tables.

Volunteer
10 (Ran-
dom
Search)

Volunteer SSN 4/year
B+ Tree Index on Vol-
unteer SSN

A B+ Tree
index on
Volunteer SSN

allows effi-
cient retrieval
of volunteers,
supporting ran-
dom access for
volunteer-client
associations.
B+ Trees’ bal-
anced structure
and efficient key
ordering fit this
use case well.

Volunteer Team
4 (Inser-
tion)

Volunteer SSN,
Team Name

30/month

Heap File with Com-
posite B+ Tree Index
on Volunteer SSN,
Team Name

Composite B+
Tree index on
Volunteer SSN

and Team Name

facilitates effi-
cient insertions
and search
for specific
volunteer-team
pairings. The
lecture notes
B+ Tree indexes
as effective for
multi-key access.

19



Table
Name

Query #
and Type

Search
Key

Query
Fre-
quency

Selected File Orga-
nization

Justifications

Volunteer Team
14 (Range
Search)

Work Hours 1/year
Clustered Index on
Work Hours

Clustered index
on Work Hours

supports ef-
ficient range-
based queries for
volunteer work
hours, enabling
streamlined
reporting, as
per Indexed-
Sequential file
suggestions.

Employee
5 (Inser-
tion)

Employee SSN 1/year
Heap File with B+
Tree Index on Em-
ployee SSN

Supports in-
frequent in-
sertions and
quick lookups
for employee
information
with a B+
Tree index on
Employee SSN,
ensuring ordered
retrieval for
reporting.

Employee
9 (Range
Search)

Employee SSN 1/month
B+ Tree on Em-
ployee SSN

Enables sorted
access and range
queries for em-
ployee expense
summaries,
optimized by
indexing on
Employee SSN.
Lecture notes
suggest B+ Tree
as efficient for
range searches
on primary keys.

20



Table
Name

Query #
and Type

Search
Key

Query
Fre-
quency

Selected File Orga-
nization

Justifications

Expense
6 (Inser-
tion)

Expense ID,
Date

1/day
Heap File with B+
Tree Index on Date

Heap file sup-
ports daily
insertions, with
the B+ Tree
index on Date

enabling ordered
retrieval of ex-
pense records for
range queries.
Indexed-
Sequential
file organization
supports this
usage.

Team Report N/A
Team Name,
Em-
ployee SSN

N/A

Heap File with Com-
posite B+ Tree Index
on Team Name, Em-
ployee SSN

Supports ef-
ficient search
for team re-
ports linked
to employees,
allowing quick
access and up-
dates as needed.
Multiple-key
indices discussed
in the lecture
are implemented
here to facilitate
multi-key access.

Donor
7 (Inser-
tion)

Donor SSN 1/day
Heap File with
B+ Tree Index on
Donor SSN

Supports fre-
quent insertions,
with a B+
Tree index on
Donor SSN for
ordered re-
trieval of unique
donors, as B+
Tree indexes ef-
ficiently support
high-volume
insertions and
random search.

21



Table
Name

Query #
and Type

Search
Key

Query
Fre-
quency

Selected File Orga-
nization

Justifications

Donor
13 (Ran-
dom
Search)

Donor SSN 1/week
B+ Tree on
Donor SSN

Supports effi-
cient retrieval of
donors by SSN,
especially when
searching for
donors who are
also employees.
Random search
benefits from
B+ Tree index
optimization,
as discussed in
lecture.

Donation
7 (Inser-
tion)

Donation ID,
Donor SSN,
Date

1/day
Heap File with Com-
posite Index on
Donor SSN and Date

Frequent in-
sertions are
handled well by
Heap file orga-
nization, with
the composite
index allowing
efficient lookups
by Donor SSN

and Date. This
structure aligns
with lecture
suggestions for
multi-key access
using indexes.

Emergency
Contact

12 (Ran-
dom
Search)

Person SSN 1/week
Heap File with B+
Tree Index on Per-
son SSN

Supports re-
trieval by
Person SSN to
access emer-
gency contact
information, op-
timized by a B+
Tree index for
random access,
which is consis-
tent with lecture
guidance on
random access.

22



3.2: Storage Structure Choices for Each Relational

Table in Azure SQL Database

Table Name
Selected File Organiza-
tion in Azure SQL

Justifications

Person Clustered Index on SSN

Clustered indexes in Azure SQL
Database provide efficient access to
unique keys and reduce storage for pri-
mary key searches. SSN is the primary
key, so a clustered index ensures effi-
cient random searches and retrieval for
SSN-based queries.

Phone Heap File

Azure SQL supports multi-valued at-
tributes by default, allowing Phone to
remain as a Heap table. Using a Heap
file for Phone keeps the storage flexible
and lightweight for managing multiple
entries per person.

Client
Non-Clustered Index on
Client SSN

A non-clustered index on Client SSN

provides fast access for client-specific
searches. Since clustered indexes
are limited in use, Azure SQL al-
lows non-clustered indexing on fre-
quently queried foreign keys, which op-
timizes lookups in tables that reference
Client SSN.

Need Heap File

Need remains as a Heap structure in
Azure SQL Database, as it primarily
stores multi-valued attributes without
frequent random access. The Heap file
in Azure handles unordered data well
with minimal storage overhead.

Insurance Policy
Clustered Index on Pol-
icy ID and Non-Clustered
Index on Type

The clustered index on Policy ID op-
timizes unique access, while a non-
clustered index on Type enhances range
searches. This combination in Azure
SQL allows rapid retrieval of specific
policy types without compromising on
insertion performance.

Team
Clustered Index on
Team Name

Team names are frequently accessed for
random searches; thus, a clustered in-
dex on Team Name is optimal in Azure
SQL. This index enables fast retrieval
of team information while supporting
ordered access based on team name.

23



Table Name
Selected File Organiza-
tion in Azure SQL

Justifications

Volunteer
Clustered Index on Volun-
teer SSN

Clustered indexing on Volunteer SSN

ensures efficient access for primary key-
based searches, while Azure’s auto-
matic tuning can suggest further in-
dexing improvements if query patterns
evolve.

Volunteer Team
Clustered Index on Vol-
unteer SSN, Non-Clustered
Index on Team Name

Volunteer SSN as a clustered in-
dex ensures fast access for volunteer
queries, while a non-clustered index on
Team Name enhances search for volun-
teers associated with specific teams, a
common query type.

Employee
Clustered Index on Em-
ployee SSN

With a clustered index on
Employee SSN, Azure SQL opti-
mizes unique employee record access,
particularly for range searches on
expenses or work hours, which are
common in this table.

Expense Columnstore Index on Date

Columnstore indexing is ideal for
analytical or read-heavy tables like
Expense. Azure SQL’s columnstore in-
dex optimizes space and retrieval effi-
ciency for expense-related data.

Team Report

Clustered Index on
Team Name, Non-
Clustered Index on Em-
ployee SSN

The clustered index on Team Name en-
ables fast team-based access, while a
non-clustered index on Employee SSN

optimizes report lookups by employee.

Donor
Clustered Index on
Donor SSN

Using Donor SSN as a clustered in-
dex allows efficient retrieval of unique
donors, supporting frequent insertions
and retrievals by SSN. Azure’s clus-
tered indexing on primary keys is ideal
for random searches.

Donation
Columnstore Index on
Donor SSN and Date

Columnstore indexing is efficient for
tables with high read demand, like
Donation. Storing data by columns re-
duces space and speeds up aggregated
or ordered retrievals for analytics on
donations, aligned with Azure’s perfor-
mance optimization strategies.

Emergency Contact
Non-Clustered Index on
Person SSN

A non-clustered index on Person SSN

allows efficient retrieval of emergency
contact information, supporting fre-
quent lookups without requiring order-
ing, which is effective for contact infor-
mation in Azure SQL.

24



25



Task 4:

26



27



28



29



30



31



32



33



34



35



36



37



38



39



40



41



42



43



44



45



Task 5

5.1 SQL Query 1-15:

46



47



48



49



50



5.2. Java code: Code and successful run is shown here.

Full code file is attached separately

51



52



53



54



55



56



57



58



59



60



61



62



63



64



65



66



67



TASK 6:

5 queries for each type (1-7):

68



69



70



71



72



73



74



75



76



77



78



79



80



81



82



83



84



85



Azure Tables:

Table: Name

Table: Client

Table: Volunter

Table: Volunteer Team

Table: Employee

Table: Expenses

Table: Donor

86



Table: Donation

Demonstrating Database Access: By executing Queries (8–11):

Query 8: Retrieve Doctor Information for Specific Clients:

Query 9: Calculate Total Expenses for Employees Within a Given
Date Range

Query 10: List Volunteers Supporting Specific Clients

Query 11: Show Teams Formed After a Given Date

Query 12: Retrieve of People in the Database with Contact In-
formation

Query 13: List Donors Who Are Employees, Sorted by Donations

87



Query 15: Delete Clients with No Health Insurance and Low
Transportation Need

88



Demonstrating Import and Export:

1. Option (16): Import Teams from a File

2. Option (17): Export Names and Mailing Addresses to a File

89



Error Detection:

1. Query with Duplicate Primary Key:

2. Invalid Foreign Key:

90



3. Incorrect Column Name:

91



Demonstrating Quit Option:

92


	Table of Contents
	PAN ER Diagram:

	Task 3:

